The University of Southampton

New nanostructured glass for imaging and recording

Published: 14 August 2011

Researchers at the Optoelectronics Research Centre have developed new nano-structured glass optical elements, which have applications in optical manipulation and will significantly reduce the cost of medical imaging.

In a paper entitled Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass published in Applied Physics Letters, a team led by Professor Peter Kazansky at the University of Southampton's ORC, describe how they have used nano-structures to develop new monolithic glass space-variant polarization converters. These millimetre-sized devices generate whirlpools of light enabling: precise laser material processing, optical manipulation of atom-sized objects, ultra-high resolution imaging and potentially, table-top particle accelerators. They have since found that the technology can be developed further for optical recording.

According to the researchers, at sufficient intensities, ultra-short laser pulses can be used to imprint tiny dots (like 3D pixels) called voxels in glass. Their previous research showed that lasers with fixed polarization produce voxels consisting of a periodic arrangement of ultra-thin (tens of nanometers) planes. By passing polarized light through such a voxel imprinted in silica glass, the researchers observed that it travels differently depending on the polarization orientation of the light. This form birefringence phenomenon is the basis of their new polarization converter.

The advantage of this approach over existing methods for microscopy is that it is 20 times cheaper and it is compact.

"Before this we had to use a spatial light modulator based on liquid crystal which cost about 20,000," said Professor Peter Kazansky. "Instead we have just put a tiny device into the optical beam and we get the same result."

Since publication of the paper in May this year, the researchers have developed this technology further and adapted it for a five dimensional optical recording.

"We have improved the quality and fabrication time and we have developed this five dimensional memory which means that data can be stored on the glass and last forever," said Martynas Beresna, lead researcher for the project. "No one has ever done this before."

The researchers are working with the Lithuanian company Altechna to introduce this technology to the market. This work was done in the framework of EU project Femtoprint.

Find out more

Physical Optics research group

Catch the full article published in Applied Physics Letters

Making vortices of light - the Nature Photonics article

Recent coverage on this research: Superman's memory crystals

Researchers working on this at the ORC: Professor Peter KazanskyMartynas Beresna, Mindaugas Gecevicius

Published: 15 August 2011

Articles that may also interest you

Share this article FacebookTwitterWeibo

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×